
Small-Signal Distortion in Feedback Amplifiers

for Audio1

James Boyk2 and Gerald Jay Sussman3

April 22, 2003

1 c©2003 Boyk & Sussman. You may copy and distribute this document so long
as the source is appropriately attributed.

2Pianist in Residence, Lecturer in Music in Electrical Engineering, and Director
of the Music Lab, California Institute of Technology

3Matsushita Professor of Electrical Engineering, Department of Electrical En-
gineering and Computer Science, Massachusetts Institute of Technology



Abstract

We examine how intermodulation distortion of small two-tone signals is
affected by adding degenerative feedback to three types of elementary am-
plifier circuits (single-ended, push-pull pair, and differential pair), each im-
plemented with three types of active device (FET, BJT and vacuum triode).
Although high precision numerical methods are employed in our analysis,
the active devices are modeled with rather simple models. We have not
investigated the consequences of more elaborate models.

Though negative feedback usually improves the distortion characteristics
of an amplifier, we find that in some cases it makes the distortion “messier.”
For instance, a common-source FET amplifier without feedback has a distor-
tion spectrum displaying exactly four spurious spectral lines; adding feedback
introduces tier upon tier of high-order intermodulation products spanning
the full bandwidth of the amplifier (as suggested by Crowhurst in 1957). In
a class-B complementary-pair FET amplifier, feedback mysteriously boosts
specific high-order distortion products.

The distortions we are dealing with are small, but we speculate that they
may be psychoacoustically significant.

This work also casts light on the relative virtues of the three types of
active devices and the three circuit types. For instance, a FET pair run in
class-A produces zero distortion even without feedback.
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Some experienced listeners report favorably on the sound quality of non-
feedback amplifiers. This is surprising, because such amplifiers have much
more nonlinear distortion than amplifiers that use negative feedback. Indeed,
the appropriate use of negative feedback improves almost all of the theoretical
and measurable parameters of an amplifier. Of course, the listeners may be
mistaken. Alternatively, some subtle consequent of negative feedback may
be responsible for the difference in perception. Here we investigate one such
possibility.

Of the various proposals attempting to explain how these perceptual dif-
ferences might arise, most have suggested bad design errors in the application
of feedback. For example, “transient intermodulation distortion” occurs in
amplifiers with inadequate slew rate;1 but real-world transients have rise
times that are easy to accommodate with modern circuits.2

Another suggestion is that feedback amplifiers are more sensitive to radio-
frequency interference. The idea is that the output impedance of a feedback
amplifier may be very low at audio frequencies, but rises as the frequency
increases. This is because feedback amplifiers must be compensated to ensure
stability, and the most common compensation scheme introduces a principal
pole at low frequencies that lowers the loop gain as the frequency increases,
so that the output impedance rises. If the impedance is high enough, strong
radio-frequency fields, as occur in our environment, can come in through
the output and wreak havoc by rectification, shifting the bias conditions of
the amplifier. This is certainly possible, but a well-shielded amplifier with
appropriate filters need not have this problem.

Yet another idea is that the clipping behavior of feedback amplifiers is dif-
ferent from that of non-feedback amplifiers: clipping is sharper and recovery
from clipping may be problematic. This also is true, but it does not explain
the perceptual differences that may remain even in the case that the ampli-
fiers are not driven to clipping: listeners report differences in the low-level
details and the sound of the “room,” the recording venue. One of us (JB) has

1Transient intermodulation distortion occurs when the amplifier cannot slew fast
enough to follow the transient. During such a transient, the amplifier is pinned to the
slew trajectory and cannot follow variations in the input. Apparently this effect was
known as early as Roddam in 1952 [8], but it only became widely known in audio circles
with the work of Otala [7].

2Boyk [2] has made a survey of wideband spectra from real musical sources. Although
some of these show significant energy above 20 kHz they put limits on the rate of change
of the sound pressure level in most ordinary music waveforms.

2



observed that the introduction of feedback into one particular (microphone
pre-) amplifier seems to “separate” the very high frequencies from the rest
of the range, as though a badly-integrated super-tweeter had been added to
the monitor system. This yields an unnatural sound that seems correlated
with but disconnected from the program material.

We investigate the possibility that the difference in sound quality is not
an accident of the particular design but is an inherent characteristic of neg-
ative feedback. The idea is not new with us. In 1957, Norman Crowhurst [4]
observed that since the intrinsic nonlinearity of an amplifier must produce
harmonic and intermodulation products from the components of the program
material, feedback will combine these products with the program to produce
further distortion products. Since many of the products in each “genera-
tion” are higher or lower in frequency than the signals that produce them,
the effect will be to create products extending over the full bandwidth of the
amplifier. Although the total amount of this distortion is very small—much
smaller than the lower-order distortion produced by the same amplifier with-
out feedback—Crowhurst observed, “The logical result of this process would
be a sort of program-modulated, high-frequency ‘noise’ component, giving
the reproduction a ‘roughness’.” We speculate that this “noise,” constantly
changing as it is (because it is correlated with the program material), may
interfere with the listeners’ perceptions of low-level detail. Such speculation
is not new with us either. As far back as 1950, Shorter [9] was worried
about the perceptual effect of high-order distortion products; and the idea
has been periodically revisited by many authors, including, most recently,
Daniel H. Cheever [3], who developed a new measurement strategy which
attempts to quantify the effect of this kind of distortion on perception.

In what follows, we examine the responses of nine elementary circuits
to two-tone inputs, comparing in each case the behavior without feedback
to that with feedback (in some cases more than one amount of feedback).
Three of the nine basic circuits are simple stages using a single FET, BJT
or vacuum triode; another three use pairs of these devices in complementary
(FET, BJT) or push-pull (triode) configurations; and the final three are
differential-input circuits. Each circuit is studied at a signal level which best
reveals the behavior of interest.

As usual in such work, the real subject of our study is the behavior of
certain mathematical equations and relations. When we ascribe the behavior
to circuits, we are assuming that the active devices are modeled perfectly by
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Figure 1: A feedback amplifier

the stated “laws” (square for FETs, three-halves for triodes, exponential for
BJTs); that complementary pairs are perfectly symmetrical; that the tubes
used in push-pull are identical; and that transformers are perfect. Though
none of these is true, the results may yet be useful.

Our analysis is stateless; that is, we assume no frequency-dependent el-
ements. Real amplifiers have such elements, but we can see the essential
behavior without considering them.

The core of this paper is the numerically-derived spectra that we obtain
for a variety of amplifiers, each being considered both with and without
feedback. We begin, however, with a formal derivation of analytic estimates
for the lowest order spectral lines, which we can use to check the validity of
the numerical work; and a bit of circuit analysis. The reader may wish to
skip this preliminary analysis and proceed to the discussion of the spectra
that begins on page 10 under “Our spectra,” touching down at figure 2 on
the way.

Feedback in a nonlinear system

In figure 1 the amplifier is modeled by a function f that is in general non-
linear. The feedback path is assumed to be a linear path that multiplies by
a constant b. Thus, the equation relating the output y to the input x is

y = f(x − by). (1)

If f were linear, say f(e) = Ae we could solve for y to get the familiar Black’s
formula,

y =
Ax

1 + Ab
. (2)
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If A is very large then y ≈ x/b, allowing us to reliably make amplifiers with
gain 1/b using amplifiers with large, but uncontrolled gain. However, the
distortion we are interested in is due to the nonlinearity of f .

Assume that f may be expressed as a power series

y = A1e + A2e
2 + A3e

3 + · · · (3)

with no offset term, so if e = 0 then y = 0. To account for the feedback we
can substitute (x − by) for e to obtain

y = A1(x − by) + A2(x − by)2 + A3(x − by)3 + · · · . (4)

In general, we can solve for y, producing a power series that represents the
entire transfer function of the feedback amplifier. This series

y = a1x + a2x
2 + a3x

3 + · · · (5)

can be obtained by taking derivatives of equation (4):

a1 =
dy

dx

∣

∣

∣

∣

x=0

=
A1

1 + A1b
(6)

a2 =
1

2

d2y

dx2

∣

∣

∣

∣

x=0

=
A2

(1 + A1b)2
(7)

a3 =
1

6

d3y

dx3

∣

∣

∣

∣

x=0

=
(A3A1 − 2A2

2)b

(1 + A1b)5
(8)

· · ·
We see that a1 is the gain we would expect if the amplifier were linear, and the
higher-order terms are the distortion. If we make the input a sinusoid x(t) =
C cos ωt, expand powers using the multiple angle formulas,3 and collect like
terms, we get a Fourier series showing the harmonic components. Considering
only the first three terms of equation (5) we get:

y =

(

Ca1 +
3

4
C3a3

)

cos ωt +
1

2
C2a2 cos 2ωt +

1

4
C3a3 cos 3ωt. (9)

Thus, for small signals (C small) the relative size of the second harmonic and
third harmonic distortion terms are:

HD2 ≈ 1

2
C

a2

a1

=
1

2

A2

A1(1 + A1b)
(10)

HD3 ≈ 1

4
C2

a3

a1

=
1

4

(A3A1 − 2A2
2)b

A1(1 + A1b)4
(11)

3For example, (cos α)2 = 1

2
+ 1

2
cos 2α and (cosα)3 = 3

4
cosα + 1

4
cos 3α.
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Figure 2: Amplifier a has no feedback; amplifier b has source feedback.

If we make the input the sum of two sinusoids of different frequencies,
we can compute the intermodulation products as well. However this kind
of algebra is not usually easy to understand past the first few terms. Since
we are interested in the high-order terms, we will not pursue the algebraic
approach, but will use it only to check the lowest terms of the numerical
results, and to help us understand how the distortion terms are generated.

A tale of two FET amplifiers

The two FET circuits in figure 2 are identical except that amplifier a has no
feedback while amplifier b has source feedback created by non-zero RS. In the
analysis below, we find that the amplifier without feedback introduces only
second harmonics and first-order sums and differences of signal components;
and that while adding feedback lowers these distortion products a bit, it
also produces all orders of harmonic and intermodulation products in tiers
stepping down in level but extending to the full bandwidth of the amplifier.

We will operate the Field-Effect Transistor (FET) in the saturated region,
where it exhibits simple square-law nonlinearity: a good approximation for
its drain current is

iD =
k

2
(vGS − VT )2, (12)
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where vGS is the gate-to-source voltage and where k and VT are parameters
of the FET. The FET is in saturation so long as VT < vGS < VT +vDS, where
vDS is the drain-to-source voltage.

Analysis: the no-feedback case

To simulate the circuit we need the output voltage as a function of the input
voltage. The output voltage is

vOUT = VDD − RLiD, (13)

so we need the drain current iD. For amplifier a, vGS = vin + VBB , so
substituting this into equation (12) and then plugging the resulting current
into equation (13) we obtain an expression for the output voltage in terms
of the input voltage:

vOUT = VDD − k

2
(vin + VBB − VT )2RL. (14)

Equation (14) is all we really need to obtain a numerical spectrum for any
given input signal, as described on page10. But first, to see what we should
expect, we do some analysis along the lines of equations (1–11), but now
specific to these FET amplifiers.

We can rewrite equation (14) as

vout = vOUT − VOUT = a1vin + a2v
2

in, (15)

a simple quadratic, where

VOUT = VDD − k

2
(VBB − VT )2RL (16)

a1 = −k(VBB − VT )RL (17)

a2 = −1

2
RLk. (18)

The incremental gain of amplifier a is thus

∂vOUT

∂vin

∣

∣

∣

∣

vin=0

= −k(VBB − VT )RL = a1 (19)

This helps us choose circuit values to obtain a given gain.
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Because this amplifier exhibits a simple quadratic law equation (15), its
distortion products can only be second harmonics and sums and differences
of the Fourier components.4 In this simple case it is easy to work out the
spectrum symbolically. (We will use this result on page 11 to check our
numerical simulation.)

We define the excess gate bias VB = VBB − VT , and the corresponding
drain bias current ID = 1

2
kV 2

B. Then the total drain current can be rewritten
as

iD = ID

(

1 + 2
vin

VB

+

(

vin

VB

)2
)

. (20)

If we drive this amplifier with a sinusoid

vin = A cos ωt (21)

we obtain
iD = ID(b0 + b1 cos ωt + b2 cos 2ωt) (22)

where

b0 =
1

2

(

1 +

(

A

VB

)2
)

(23)

b1 = 2
A

VB

(24)

b2 =
1

2

(

A

VB

)2

. (25)

This Fourier series has only three terms. Comparing the magnitude of the
second harmonic component to the magnitude of the fundamental we obtain

HD2 =
b2

b1

=
A

4VB
. (26)

We could work out the sizes of the Fourier components for the two-tone
stimulus, getting terms for the sum and difference as well as the two second
harmonics, but for more complicated circuits this would be much harder.

4Remember that squares of weighted sums of sinusoids can be expressed as weighted
sums of sinusoids with angles that are sums and differences of the given angles.
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The feedback case

Amplifier b is a bit more complicated. As before, we need an expression for
vOUT in terms of vin. The output voltage is

vOUT = VDD − RLiD, (27)

so we need the drain current iD. But to compute the drain current we must
solve a quadratic equation:

k

2
R2

Si2D − (kRSvG + 1) iD +
k

2
v2

G = 0, (28)

where vG = vin + VBB − VT . We pick the correct root so that as RS → 0 the
circuit approximates the behavior of amplifier a. This gives

iD =
1

RS

(

vG +
1

RSk

)

−
√

2

RS

√
RSk

√

vG +
1

2RSk
. (29)

Substituting into equation (27) we obtain

vOUT = VDD − RL

2kR2
S

[

√

1 + 2kvGRS − 1
]2

, (30)

which is what we need for the simulation.
The incremental gain is

∂vOUT

∂vin

∣

∣

∣

∣

vin=0

= −RL

RS

(

1 − 1
√

1 + 2RS (VBB − VT ) k

)

, (31)

which goes to −RLk(VBB −VT ) as RS → 0, as required by the condition that
circuit a is a special case of circuit b (RS = 0).

If we expanded equation (30) as a power series we would see that the
square-root term expands into all powers of the incremental input voltage
vin. So by contrast with the simple amplifier a the feedback amplifier b

produces not just second harmonics but all orders of harmonics; not just
simple sums and differences, but all orders of intermodulation products. This
illustrates the idea behind the claim that the feedback amplifier produces a
more complex spectrum than the simple amplifier. However, to learn more
we have to be quantitative.
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Our spectra

Using numerical simulation, we compared the behavior of these amplifier
topologies when stimulated by a two-tone signal. As for all examples in this
paper, the two tones were at frequencies 3 and 5. Because the simulations
are done with no frequency-dependent elements the units of the frequencies
do not matter; all that matters is their ratio. The frequencies were chosen
to be relatively prime (they are both actually prime) so as to show the max-
imum number of independent components. Perhaps it would be better to
use incommensurate frequencies, such as 3 and 3φ, where φ = (1 +

√
5)/2,

the golden ratio; but we chose integer frequencies and an integer timespan
so that the spectra would come out as clean lines, without spectral leakage
or skirts due to the window function. The small errors introduced by choos-
ing integers rather than incommensurate numbers are not significant in our
results.

All of the spectra in this paper were developed using numerical-analysis
procedures written by one of the authors (GJS). For each circuit, a numerical
procedure was written to determine the output voltage in terms of the input
voltage, for each moment of time. This was easy when the relationship was
given by a single equation, such as equation (14) for the no-feedback single-
ended FET stage. Other cases, however, required solving simple nonlinear
systems of equations, such as equations (28–30) for the same FET stage with
feedback.

In general, equation solutions are accurate to one part in 1014 (−280 dB).
Other errors sometimes contribute to bring the noise floor 15 dB higher. The
two-tone input was generated in a time span of 16 and sampled with 4096
points. The output voltage was computed for each of these input points and
transformed with a 4096-point transform to obtain the frequency spectrum,
with a maximum representable frequency of 128. However, our spectral plots
only show frequencies up to 32. In fact there are no distortion components
above the noise floor in our data above a frequency of 127, so our graphs are
not contaminated by aliases.

Two-tone spectra of FET amplifiers

The amplifiers were designed to have an incremental gain of −10 (that is,
20 dB, inverting), using formulas (19) and (31). The FETs were assumed
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to have k = 0.002 A V−2 and VT = 1.0 V.5 The other device parameters
and operating conditions are given in the table below. We see that both
amplifiers are comfortably biased into the saturation region, and that the
source resistor in circuit b produces only a small amount of feedback (about
1.8 dB). The bias current in amplifier a is 1.0 mA; and in b, about 0.814 mA.
The table shows parameters for these two amplifiers, and for amplifier c, with
the same topology as b but more feedback (about 9.5 dB). We include c to
demonstrate the robustness of the conclusions.

a b c

VBB 2.0 2.0 3.0 V
RL 5000 6800 15000 Ω
RS 0 120 1000 Ω

ID 1.0 0.814 1.0 mA

In these experiments the two tones of the stimulus are of equal amplitude
(.05 peak volts), at frequencies 3 and 5. As mentioned above, we use the same
stimulus frequencies throughout this paper, though the amplitudes may vary;
and all single-ended amplifiers studied have incremental gains of −10 (that
is, 20 dB, inverting).

In the spectrum of amplifier a (figure 3) the fundamental components
(frequencies 3 and 5) have been normalized to 0 dB. The second harmonics
(frequencies 6 and 10) are at −38 dB; and the sum and difference intermod-
ulation products (frequencies 2 and 8) are at about −32 dB.

Here we can check the simulations against the theory: The simulations
show that the second harmonics are down by -38 dB. If we evaluate the ratio
of the second harmonic to the fundamental using equation (26), plugging in
0.05 for A and 1.0 for VB = VBB − VT , we find that the ratio is 0.0125 or
−38.06 dB.

The spectrum of the feedback amplifier b (figure 4) is more complicated,
as expected. The second harmonics are at about −40.5 dB, and the sum and
difference frequencies are at about −34.5 dB. This is a small improvement—
about 2.5 dB in each line—compared to the amplifier without feedback. How-
ever, there is a new tier of components with peaks at about −80 dB; and
even more components down around −120.

5These paramters are typical for an N-channel enhancement-mode MOSFET when used
for small-signal amplification.
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Figure 3: The spectrum of amplifier a: a single-ended FET without feedback;
the two-tone input has 0.05 peak volts in each component.
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Figure 4: The spectrum of amplifier b: a single-ended FET with source
feedback; the two-tone input has 0.05 peak volts in each component.
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The spectrum of amplifier c is not shown. Its additional feedback com-
pared to b makes for a distortion spectrum which is similar except that all
of the products are pushed down in level.

Returning to feedback amplifier b, in figure 5 we expand the vertical
scale of the spectrum to see the structure more clearly. We see many tiers
of distortion products, each produced by an additional circulation around
the feedback loop and 40 dB below the previous tier. The noise just above
−300 dB is due to numerical error in the equation solver.

-300
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0
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dB

frequency

"feedback1.data"

Figure 5: Expanded spectrum of amplifier b: a single-ended FET with source
feedback; the two-tone input has 0.05 peak volts in each component.

Thus we observe that adding negative feedback to a FET amplifier, while
decreasing the overall amount of distortion, significantly changes the distri-
bution of the distortion products. In two-tone tests, feedback introduces new
tiers of products, most very weak, but not necessarily insignificant perceptu-
ally, as they produce a noise floor correlated with the program material. And
not only does the amplitude of this noise floor rise and fall with the amplitude
of the program material, but its character changes as it rises and falls, higher-
order products being more volatile than lower-order ones. If we increase the
drive of the FET amplifier by 12 dB, from 0.05 peak volts to 0.2 peak volts,
the distortion at frequency 2 rises by 24 dB (12 dB relative to the input
signals), which we may take simply as due to higher signal levels. But the
components at frequencies 17 and 19 increase by 60 dB (48 dB relative to
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the input signals). As the level rises, the distortion is thus weighted toward
the higher-order terms, and mostly toward higher frequencies.6 Further ex-
periments (not shown) with the FET amplifier demonstrates this point.

If we change the fundamental signal amplitudes, the amplitudes of the
distortion products change so that the spectrum has essentially the same
shape in that it is made up of tiers of distortion products, but the amplitude
difference between the tiers changes. As the fundamental signal amplitudes
decrease the spacing increases, so small signals are relatively less distorted
than large ones.

BJTs are different

Consider the two Bipolar Junction Transistor (BJT) circuits shown in fig-
ure 6. BJTs are quite different from FETs in that, while FETs have a
square-law relationship between the controlled current and the control volt-
age, the relationship for a BJT is exponential. For a correctly biased BJT a
good approximation of the collector current iC in terms of the base-emitter
voltage vBE is

iC = I0

(

e
q

kT
vBE − 1

)

, (32)

where I0 is a very small number, such as 10−12, that depends on the geometry
of the transistor; and q

kT
is about 38.68 for a temperature of 300 K.

Circuit d is a simple BJT common-emitter amplifier with no feedback,
while circuit e is the same but with emitter feedback created by the inclusion
of non-zero RE. We consider two values of RE, 100 and 1000 ohms, and refer
to the two resulting amplifiers, having respectively about 14 and 32 dB of

6 This strong dependence of the amplitude of a distortion product on its order is not
accidental, but it is inherent in the mathematics of the situation: each distortion product
arises from terms of the series expansion that have powers of the input equal to the sum
of the absolute values of the integer weights of the fundamental components. So frequency
17 = 4·3+1·5 = −1·3+4·5 has integer weights 4 and 1 which sum to 5. Thus the exponent
associated with it is 5 and so a 12 dB change in the input produces a 5 × 12 = 60 dB
change in the output at this frequency. Of course, 17 = 7 ·5−6 ·3 as well, with an exponent
of 13. So this term grows even faster than the fifth-order ones already described, but it
starts out so much smaller that under reasonable assumptions it never exceeds the fifth-
order terms. The lowest-order combinations of input frequencies that give any particular
component are usually dominant. The conditions under which this series converges, and
under which the low-order terms are dominant are mathematically very interesting, but
they are beyond the scope of this paper.
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Figure 6: Amplifier d has no feedback; amplifier e has emitter feedback.

feedback, as e and f. We bias all three amplifiers to have a gain of −10
with a collector current of about 1 mA. The analysis of these BJT amplifiers
is similar to the analysis of the FET amplifiers. The operating conditions
are summarized in the table below. The numbers are not round because we
wanted to bias circuit d to 1 mA.

d e f

VBB 0.5453 0.6453 1.5453 V
RL 263.2 1264 10270 Ω
RE 0 100 1000 Ω

IC 1.0 1.0 1.0 mA

The nonlinearity of a BJT is extremely sharp, so we drive the input with
a peak voltage of only 0.0004 Volts in each frequency. If we used 0.05 Volts,
as with the FETs, the distortion of the no-feedback BJT amplifier would be
very bad and we would not be able to understand the effect of the feedback.
To avoid this distortion in real-world circuits that use BJTs, degenerative
feedback is employed to ensure that the signal appearing across the base-
emitter junction of the transistor is very small.

The spectrum of d, the BJT amplifier without feedback (figure 7), is com-
plicated, and remarkably similar to the spectrum of the FET amplifier with

feedback, showing several tiers of distortion products. We can understand
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Figure 7: The spectrum of amplifier d: a single-ended BJT without feedback;
the two-tone input has 0.0004 peak volts in each component.
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Figure 8: The spectrum of amplifier e: a single-ended BJT with emitter
feedback; the two-tone input has 0.0004 peak volts in each component.
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this by realizing that the power-series expansion of the BJT’s exponential
characteristic contains terms of all order in the input voltage. In the FET
amplifier the high-order terms are constructed by the feedback process; in
the BJT, they are inherent.

The spectrum of e, the BJT amplifier with feedback (figure 8) is like
the spectrum without feedback except that all of the distortion products are
substantially attenuated. When we increase the feedback, as in circuit f, we
see (figure 9) that the performance of the amplifier again improves dramat-
ically, so that the principal distortion lines are suppressed below −100 dB
and the next tier is suppressed below −180 dB. Thus, in the case of the BJT,
feedback improves the nonlinear distortion of the amplifier.

Although the no-feedback BJT amplifier started out much worse than the
no-feedback FET amplifier it is vastly improved by feedback; and because
the transconductance of the BJT is much higher than the transconductance
of the FET, we can use much more feedback and still obtain the same overall
gain.

The extra gain also allows enough feedback so that a BJT amplifier can ac-
comodate a greater range of input voltages without exceeding a given distor-
tion level, even though the intrinsic nonlinearity of the BJT is much sharper
than the nonlinearity of the FET, seriously restricting the input range of
the bare BJT relative to the bare FET. For example, if we try to drive BJT
circuit f (with 32 dB of feedback) with the same size input that we used with
the FET amplifiers (peak voltage 0.05 in each component), the distortion in
the BJT amplifier (figure 10) is 13 dB lower than the distortion in the FET
amplifier c with only 9.5 dB of feedback.

Comparison of figure 9 and figure 10 illustrates another interesting point:
For the BJT stage with or without feedback, as for the FET stage wth
feedback, higher-order distortion products are emphasized as the amplitude
of the input signals is increased.7 This is generally true of any nonlinear
system that shows tiers of intermodulation products.

Vacuum triodes

To analyze a triode we start with the behavior of a vacuum diode. This can
be approximately characterized by the Child-Langmuir law, which gives the

7See the footnote 6
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Figure 9: The spectrum of amplifier f: a single-ended BJT with more emitter
feedback; the two-tone input has 0.0004 peak volts in each component.

-200

-150

-100

-50

0

0 5 10 15 20 25 30

dB

frequency

"bjtmorefeedback2.data"

Figure 10: The spectrum of amplifier f: a single-ended BJT with more emitter
feedback; the two-tone input has 0.05 peak volts in each component.
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anode current iP as a function of the voltage from anode to cathode vPK

iP =

√
2

9πd2

√

e

m
v

3/2

PK, (33)

where d is the distance from the anode to the cathode, and e/m is the
charge-to-mass ratio of the electron. This forms a theoretical basis for a
model for the behavior of a vacuum triode by modifying equation (33) to
include the influence of the control grid [6]. The influence of the control grid
is parameterized by the amplification factor µ, which is defined to be

µ =
∂vPK

∂vGK

, (34)

where vGK is the grid-to-cathode voltage. With this, the model is

iP = K(vPK + µ vGK)3/2, (35)

where the perveance K and the amplification factor are determined by the
geometry of the device. In published specifications, the amplification factor
and the transconductance

gm =
∂iP

∂vGK
(36)

are often provided for a given operating point, and we have to deduce the
perveance.8

For the FET amplifiers we had single equations (14, 30) that gave vOUT

in terms of vin. For the BJT, the situation was similar, though we did not
give the equations. In the FET case, equation (30) was an explicit solution,
but in the BJT case a numerical solution was necessary. But for the tube
circuit h (amplifier g is the same, but with RK = 0; see figure 11), we have
instead a fairly complicated set of equations:

vPK = VBB − (RL + RK)iP (37)

vGK = vin − VCC − RKiP (38)

iP = K(vPK + µ vGK)3/2 (39)

vOUT = VBB − RLiP . (40)

8 For example, for a section of a 6DJ8 [1] double triode, the data sheet gives gm ≈
0.0125 amps/volt and µ ≈ 33 when operating at VPK = 90 volts and VGK = −1.3 volts,
so we have K ≈ 3.7× 10−5.
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Figure 11: Amplifier g has no feedback; amplifier h has cathode feedback.

It is not illuminating to attack these equations analytically. However, the
3/2 power law in equation (39) can be expressed as a power series that has
terms of all order, and this will be part of the answer even when RK = 0.
Thus, we can expect the triode results to be something like the BJT results
obtained above, in that distortion products of all orders should appear in the
spectrum of the simple amplifier g. The question is: Does the addition of
feedback make things better or worse?

The numerical results are not surprising. We simulated the amplifier with
a 6DJ8 triode9 under the following operating conditions:

g h

VBB 100 140 V
VCC -1.2 0 V
RL 1200 3500 Ω
RK 0 150 Ω

IP 11.7 11.1 mA

Both of these amplifiers have a gain of approximately −10. The spectrum
of the no-feedback tube amplifier g has all orders of distortion products,
as predicted. But the distortion products are generally smaller than the

9See footnote 8
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corresponding products in either the no-feedback FET or BJT amplifiers (a
and d), because the triode is fundamentally more linear than either the BJT
or the FET.

The spectrum of amplifier h, with cathode feedback (figure 13), is cleaner
than that of g (figure 12). All of the products are pushed down considerably,
making it comparable to the spectrum of the BJT with emitter feedback
(figure 8). However, here the amplitude is 0.05 volts for each component;
the comparable BJT spectrum is for a drive of .0004 peak volts. If we com-
pare with the spectrum of a BJT with “more” emitter feedback driven with
0.05 peak volts (figure 10) we find that the tube amplifier with small cathode
feedback is still somewhat cleaner.

Additional experiments (not shown) show that smaller signals produce
smaller distortion components, for triode amplifiers with and without cathode
feedback.

21



-200

-150

-100

-50

0

0 5 10 15 20 25 30

"triodenofeedback.data"

Figure 12: The spectrum of amplifier g: a single-ended vacuum triode with-
out feedback; the two-tone input has 0.05 peak volts in each component.
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Figure 13: The spectrum of amplifier h: a single-ended vacuum triode with
cathode feedback; the two-tone input has 0.05 peak volts in each component.
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Details of single-ended amplifiers

In the following table we summarize the relative amplitudes of the principal
spectral lines that occur in the output of each of the elementary amplifiers
that we have considered:

FET BJT Triode
ckt a b c d e f g h

drive 0.05 0.05 0.05 0.0004 0.0004 0.0004 0.05 0.05
fb dB 0 1.8 9.5 0 14 32 0 4.2

1 -78.9 -92.7 -90.7 -128.9 -182.1 -92.1 -114.5
2 -32.0 -34.5 -51.1 -42.4 -69.6 -106.0 -47.5 -65.6
3 0 0 0 0 0 0 0 0
4 -114.3 -125.4 -134.8 -181.3 -193.7 -126.0 -153.8
5 0 0 0 0 0 0 0 0
6 -38.1 -34.5 -57.1 -48.4 -75.7 -112.0 -53.5 -71.6
7 -78.9 -92.7 -90.8 -128.9 -177.9 -92.1 -114.5
8 -32.0 -34.5 -51.1 -42.4 -69.6 -106.0 -47.5 -65.6
9 -88.4 -102.2 -100.3 -138.4 -187.0 -101.6 -124.0

10 -38.1 -40.5 -57.1 -48.4 -75.7 -112.0 -53.5 -71.6
11 -78.9 -92.7 -90.8 -128.9 -180.7 -92.1 -114.5
12 -120.3 -131.4 -140.8 -187.2 -197.8 -132.1 -159.8
13 -78.9 -92.7 -90.8 -128.9 -182.6 -92.1 -114.5
14 -122.3 -133.4 -142.7 -190.2 -200.5 -134.0 -161.8
15 -88.4 -102.2 -100.3 -138.4 -184.8 -101.6 -124.0
16 -118.7 -129.8 -139.2 -185.0 -188.8 -130.5 -158.2
17 -159.2 -167.6 -191.1 -201.4 -168.7 -202.4
18 -122.3 -133.4 -142.7 -189.1 -209.7 -134.0 -161.8
19 -159.2 -167.6 -191.1 -168.7 -202.4
20 -134.3 -145.4 -154.8 -199.0 -146.0 -173.8
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Summary of single-ended amplifiers

For all cases, input signals were at frequencies 3 and 5 (unscaled). Input
voltage levels were always equal for the two components and were as given
below. Unless otherwise stated, (a) Higher input level raises the relative
distortion and (b) emphasizes higher-order distortion products. (c) Adding
more feedback lowers all distortion products.

1. FET: 0.05 peak volts in each input component

Without feedback, distortion consists of only 2nd harmonics and first-
order sums and differences of the two input components; that is, only
the four frequencies 2, 6, 8, 10. Feedback creates complex new distor-
tion products extending over the full bandwidth of the amplifier and
thus constituting a kind of “noise floor.”

2. BJT: 0.0004 peak volts in each input component

Distortion without feedback is complex, resembling that of the FET
amplifier with feedback.

3. Triode: 0.05 peak volts in each input components

Distortion without feedback is complex, resembling that of the FET
amplifier with feedback, but distortion products are distinctly lower in
level that in the no-feedback FET amplifier at the same input level, or
even the no-feedback BJT amp at its much lower level.
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Output stages using two devices

The push-pull output stage is ubiquitous in audio amplifiers. It provides
symmetrical low-impedance drive, and it introduces no even-harmonic dis-
tortion.

BJT complementary-pair output stage

Consider the idealized BJT stage in figure 14. We assume that the PNP
and NPN transistors have identical behavior, except for signs, and that they
are symmetrically biased and operated in class A (that is, neither transistor
is cut off for any input signal). One way to understand this stage is as a
push-pull emitter follower; it has no voltage gain, but plenty of power gain.

−

+

RL+

−V

− +
V

V
−

+V

BB

BB

CC

+ −vOUT+−
vIN

A

RS RF
CC

Figure 14: An idealized complementary-pair stage constructed from BJTs,
driven by an ideal linear differential amplifier of voltage gain A.

The analysis is then quite simple. For the two transistors we have

iCN = +I0

(

e+
q

kT
vBEN − 1

)

(41)

iCP = −I0

(

e−
q

kT
vBEP − 1

)

, (42)

where

vBEN = A∆v − vOUT + VBB (43)

vBEP = A∆v − vOUT − VBB (44)
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and

iOUT = iCN + iCP (45)

∆v = vIN − RS

RF + RS
vOUT . (46)

From these we can deduce that

vOUT = 2RLI0e
q

kT
VBB sinh

(

q

kT

(

AvIN −
(

ARS

RF + RS
+ 1

)

vOUT

))

. (47)

For each vIN we must numerically solve for vOUT .
By adjusting VBB this complementary-pair stage could be biased for any

amount of crossover distortion. The stage has approximately unity gain,
but by adjusting the prescalar gain A and the resistive divider (RS and RF )
we can see how the stage would behave in an amplifier with any gain and
feedback we please. We tested the BJT pair stage only in class A, however.
As in the single-ended cases, we set things up so that the overall gain is always
10. In our experiments we set vBB = 0.6 volts. So, with I0 = 10−12 amperes
we have a resting bias current of about 8 mA through the transistors.

In the no-feedback case, we prescale the input by 10 (to give the desired
overall gain), so the actual signal driving the bases of the complementary
pair had a peak voltage of 0.05 volts for each component. (The variation in
the base-emitter voltage remains small here because this is a follower circuit.)
With this we got the spectrum of the output that appears in figure 15.

We introduce feedback by boosting the prescalar gain to 100, and feeding
back 0.089 of the output signal. With this we get the spectrum of the output
that appears in figure 16. As we would expect, the feedback improves the
result by suppressing all of the distortion products. Whether or not we apply
feedback in this class-A amplifier the relative distortion decreases with the
signal amplitude.

FET complementary-pair output stage

We can replace the complementary-pair of BJTs in figure 14 with FETs. The
most common way to do this is to use the P-channel FET as the pullup and
the N-channel FET as the pulldown. This yields a symmetrized inverting
amplifier stage with voltage gain, as in a CMOS inverter stage. An unusual
alternative, which is more analogous to the complementary BJT stage ana-
lyzed above, is to make a symmetrical source follower, as in figure 17.
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Figure 15: The spectrum of the complementary-pair BJT amplifier without
feedback; the two-tone input has 0.005 peak volts in each component.
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Figure 16: The spectrum of the complementary-pair BJT amplifier with
19 dB of feedback; the two-tone input has 0.005 peak volts in each component.
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Figure 17: An idealized complementary-pair stage constructed from FETs,
driven by an ideal linear differential amplifier of voltage gain A. The node
potential at the output of the differential amplifier is labeled x.

If we let the excess bias VB = VBB − VT and we let v = x − vout, where x
is the node potential at the output of the differential amplifier, then

iDN =

{

0 if v + VB < 0

+k
2
(v + VB)2 otherwise

(48)

iDP =

{

0 if v − VB > 0

−k
2
(v − VB)2 otherwise

. (49)

By adjusting VBB we can choose to make this stage operate class A or class B
(for any input, one transistor is always cut off and the other is active) or any
combination.

A remarkable feature of this complementary pair is that if we set VBB >>
VT , so the stage is operated class A, then the distortions exactly cancel and
the result is linear! In this case

vOUT =
2RLVBk

1 + 2RLVBk
x; (50)

feedback has no effect except to control the gain.
If we set the bias VBB = VT then VB = 0, the amplifier operates in

class B, and there is distortion. Where the BJT emitter follower had voltage
gain close to unity, the FET source follower has substantially less gain. So
to attain an overall gain of 10 with a load of 1000 Ω and no feedback, the
prescalar must have a gain of about 20.
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Figure 18: The spectrum of the class-B complementary-pair FET amplifier
without feedback; the two-tone input has 0.06 peak volts in each component.
Note that the vertical range here is 100 dB rather than the usual 200 dB.
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Figure 19: The spectrum of the class-B complementary-pair FET amplifier
with 18 dB of feedback; the two-tone input has 0.06 peak volts in each
component. Note that the vertical range here is 100 dB rather than the
usual 200 dB.
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Figure 20: An idealized push-pull stage constructed from vacuum triodes.

We can maintain an overall gain of 10 while introducing 18 dB of feedback
by increasing the prescalar gain to 100.

The spectra are interesting. Figure 18 shows the spectrum of the ampli-
fier without feedback; figure 19, that of the amplifier with feedback. While
feedback generally improves the signal, the distortion is still pretty bad; and
the products at frequencies 23 and 25 are much worse with feedback than
without feedback. Indeed, the component at frequency 25 is almost 20 dB
worse with feedback!

This effect disappears with larger excitation signals, where the crossover
region is a smaller portion of the waveform. As the size of the excitation
increases the distortion generally decreases and the feedback becomes uni-
formly effective. For smaller excitations the relative distortions worsen both
with and without feedback.

Vacuum triode push-pull output stage

Because vacuum triodes do not come in complementary pairs a push-pull
amplifier built from triodes is configured somewhat differently from one built
with semiconductor devices. The traditional method is to use center-tapped
transformers to provide a phase inversion at input and the output. Unfor-
tunately, transformers that provide good performance over a wide range of
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frequencies and amplitudes are expensive and hard to manufacture, espe-
cially if they must be used with significant bias current; thus most modern
audio amplifiers do not use transformers. In the simple circuit of figure 20 we
assume nonetheless that the 1–1 transformers are ideal, and that the tubes
are identical.

In this circuit, which we analyze only in class A, we can adjust the amount
of cathode degeneration, plate current and voltage gain by adjusting RK ,
VCC and RL respectively. (In a real circuit, RL would be given, and we
would change the output transformer turns ratio to adjust the effective load
resistance.) We set the voltage gain to 10; plate bias current, to 10 mA; and
peak voltage in each input component to 0.1 volts. This is higher than we
used in the other circuits, because the distortion of the triode circuit turned
out to be very low.

In figure 21, we see that, allowing for the level difference in the input
signal, the low-order part of the spectrum of the push-pull amplifier without
feedback is very similar to the spectrum of the single-ended tube amplifier
(figure 12) with the even-order components suppressed. However, there are
some new high-order components (with frequency larger than 15). The spec-
trum with RK = 100 Ω, a moderate amount of feedback, proved much better
(figure 22).

In the class-A vacuum triode push-pull stage the relative distortion de-
creases with decreasing signal amplitude, with or without feedback. This is in
stark contrast to the behavior we observe with the class-B FET complementary-
pair stage. In that case the relative distortion increases as the signal ampli-
tude decreases. This is because the size of the nasty region near zero is
constant in the class-B stage. (On the other hand, the class-A FET pair had
zero distortion!)
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Figure 21: The spectrum of the push-pull vacuum triode amplifier without
feedback; the two-tone input has 0.1 peak volts in each component.
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Figure 22: The spectrum of the push-pull vacuum triode amplifier with feed-
back; the two-tone input has 0.1 peak volts in each component.
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Summary of output amplifiers

For all cases, input signals were at frequencies 3 and 5 (unscaled). Input
voltage levels were always equal for the two components and were as given
below. Unless otherwise stated, (a) Higher input level raises the relative
distortion and (b) emphasizes higher-order distortion products. (c) Adding
more feedback lowers all distortion products.

1. BJT: 0.005 peak volts in each input component

Complementary pair analyzed in class A only. Distortion products of
even-numbered frequencies are absent due to circuit symmetry. How-
ever, the pair without feedback, compared to the single-ended BJT
stage without feedback, generates frequencies 17, 25, 27 and 29 at lev-
els much higher than expected. And the pair with feedback, compared
to the single-ended BJT with feedback, generates 17, 19, 21, 23 and 25
at much higher levels than expected.

2. FET: 0.06 peak volts in each input component

Symmetrical source follower, with N-type pullup analyzed in class A
and class B. In class A, the pair is distortion-free even without feedback,
and feedback’s only role is to set gain. In class B, even-numbered
distortion products are absent due to circuit symmetry; but frequencies
23 and 25 get worse with feedback! Also in class B with or without
feedback, relative distortion goes up as input level goes down.

3. Triode: 0.1 peak volts in each input component

Push-pull circuit analyzed in class A only. Even-numbered distortion
products are absent due to circuit symmetry. Feedback suppresses all
products.
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Differential input stages

The long-tailed differential pair appears as the input stage in many audio
amplifiers. It can be used to provide common-mode rejection on a balanced
input, or a convenient place to apply global DC feedback, allowing the de-
signer to control the bias as well as the gain with the feedback network. This
remarkable circuit can be realized with a matched pair of tubes, BJTs, or
FETs, as in figure 23. If a single-ended output is needed then only one output
need be used, at the cost of a factor of two in gain (though if current mirrors
are available in the technology we can get a single-ended output without loss
of gain).
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Figure 23: Differential pairs can be constructed using any transconductance
device.

In the ideal case we drive the differential pair with a current source and
the current is divided between the two branches. If the input voltages vI1

and vI2 are equal then the current is divided equally and the voltage drops
across the load resistors are equal, so the output voltages vO1 and vO2 are
equal. If the input voltages differ then more of the current is routed through
the branch with the higher input voltage and thus that branch has a lower
output voltage than the other one. If the differential input voltage vI1 − vI2

is too large then all of the current is routed through one branch, pinning the
pair. If the current source is perfect then the differential pair is insensitive
to common-mode variations in the input voltages.
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In the circuits of figure 23 we have included degeneration resistors (emit-
ter, source, cathode) to allow us to introduce feedback. In a differential pair
such degeneration can help us to compensate for the fact that the devices are
not perfectly matched, and it allows us to exchange gain for an increase in
the range of differential input voltages for which the pair has approximately
linear operation.

The analysis of a differential pair with degeneration resistors is rather
involved, requiring us to work with a nasty set of nonlinear equations, which
must be solved numerically. Here we show the equations for the case of the
vacuum triode pair; the other cases are similar, but a bit easier.

The plate currents in the triodes are

iP1 = K(vPK1 + µ vGK1)
3/2 (51)

iP2 = K(vPK2 + µ vGK2)
3/2, (52)

where

vPK1 = (VBB − RP iP1) − (vI1 − vGK1) (53)

vPK2 = (VBB − RP iP2) − (vI2 − vGK2). (54)

The branches are connected by two facts: the plate currents must sum up to
the current source

IKK = iP1 + iP2, (55)

and Kirchoff’s voltage law must hold

vI1 − vGK1 − RK iP1 + RK iP2 + vGK2 − vI2 = 0. (56)

Finally, if we know the plate currents, we know the output voltages:

vO1 = VBB − RP iP1 (57)

vO2 = VBB − RP iP2. (58)

We simulated differential pairs built with BJTs FETs and triodes, with
and without feedback. The results are what we would expect. The spectra
show only odd-order terms: the even-order distortions are cancelled by the
symmetry of the system. By choosing the scale of the input signals and
the amount of feedback, we could get the main distortion products to be
approximately the same size for each circuit both with and without feedback.
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For the BJT differential pair we set the current source at 1 mA, so the
bias current for each BJT is 0.5 mA. This gives us a transconductance of
about 19.3 mS. With no feedback (emitter resistors omitted) we obtain a
gain of 10 with collector resistors of about 520 Ω. To add feedback we install
the emitter resistors. With emitter resistors of 217 Ω we had to increase the
collector resistors to 2700 Ω to maintain the amplifier gain of 10.

In the BJT spectra (figures 24 and 25) the strongest distortion terms
are the third-order intermodulation products at frequencies 1, 7, 11, 13,
followed by the third harmonics at frequencies 9 and 15. Without feedback
the intermodulation is at about -53 dB and the third harmonics are at about
-62 dB. With feedback these components are suppressed to -96 dB and -
105 dB respectively. However, to keep the distortion this small the BJT
differential pair must be operated with very small input signals. Here we use
5 mV peak in each component.

For the FET differential pair, we set the current source at 2 mA, so the
bias current for each FET was 1 mA, giving a transconductance of 2 mS.
With no feedback (source resistors omitted) we obtain a gain of 10 with
drain resistors of 5000 Ω. We set the current source for the triode pair at
10 mA, so the bias current for each triode was 5 mA. (The transconductance
was not computer here, because for triodes the plate current depends also
on plate-cathode voltage.) With no feedback (cathode resistors omitted) we
obtain a gain of 10 with plate resistors of 1530 Ω.

We adjusted the input signal levels for the FET and triode pairs so that,
without feedback, the strengths of the strongest distortion products would
be about the same as that of the corresponding lines in the BJT spectrum
without feedback. Where the BJTs were running at 0.005 peak volts in each
input component, the FETs could handle 0.15 peak volts and the triodes
0.35 peak volts (a mighty big input signal!)

Then we adjusted the amount of feedback in the FET and triode circuits
so that, again, the distortion products would come as close in level as possible
to those of the BJT with feedback. For the FETs, this was accomplished
with source resistors of 2000 Ω; and the drain resistors were then chosen to
be 25,000 Ω to give the desired gain of 10. For the triodes, this required
cathode and plate resistors of 400 Ω and 7500 Ω, respectively.

The spectra for all three devices are remarkably similar, reflecting the
good behavior of differential-pair topology with all three types of devices.
The FET pair (figures 24 and 25) show minor differences from the BJTs in
the second tier. The triodes produced a second tier with higher levels than
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Figure 24: The spectrum of the BJT differential pair without feedback; the
two-tone input has 0.005 peak volts in each component.
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Figure 25: The spectrum of the BJT differential pair with feedback; the
two-tone input has 0.005 peak volts in each component.
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Figure 26: The spectrum of the FET differential pair without feedback; the
two-tone input has 0.15 peak volts in each component.
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Figure 27: The spectrum of the FET differential pair with feedback; the
two-tone input has 0.15 peak volts in each component.
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Figure 28: The spectrum of the triode differential pair without feedback; the
two-tone input has 0.35 peak volts in each component.
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Figure 29: The spectrum of the triode differential pair with feedback; the
two-tone input has 0.35 peak volts in each component.
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the BJT or FETs, but with feedback they were all down more than 150 dB.
Further experiments indicate that the distortion only decreases with de-

creasing signal strength, and that feedback only helps.

Summary of differential-input amplifiers

For all cases, input signals were at frequencies 3 and 5 (unscaled). Input
voltage levels were always equal for the two components and were as given
below. Unless otherwise stated, (a) Higher input level raises the relative
distortion and (b) emphasizes higher-order distortion products. (c) Adding
more feedback lowers all distortion products.

1. BJT: 0.005 peak volts in each input component

2. FET: 0.15 peak volts in each input component

3. Triode: 0.35 peak volts in each input component

Discussion

In all cases, with and without feedback, intermodulation terms dominate the
harmonic distortion terms of the same order. We all know this must be true,
but we usually forget it.

Feedback generally improves the intermodulation behavior of the ampli-
fier fragments we have examined, but the exceptions are interesting: the
performance of a single-ended FET stage can be made significantly messier
with feedback; and strange things happen when we apply feedback to a FET
class-B complementary pair.

The tube amplifier fragments start off nicer than BJTs and FETs—and
they keep the advantage of handling bigger signals for a given amount of
distortion—but BJTs can be made very nice with lots of feedback. And a
class-A FET complementary pair is distortionless, if you can find perfectly-
matched FETs that perfectly follow the theoretical square law. Unfortu-
nately, it is hard to find well-matched FETs, and the FET model that this
conclusion is based on is rather crude. We do not know what happens with
a more accurate model of any particular FET pair.

The spurious signals generated by feedback in the single-ended FET am-
plifier, and enhanced by feedback in the class-B FET pair, are correlated
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with the program material, since they are constructed from sums and dif-
ferences of integer multiples of the program-material frequencies. We do
not know whether or not this program-correlated noise is psychoacoustically
significant, but its presence is certainly suggestive.

So high-order products can be enhanced by feedback in some simple am-
plifier stages. Although we have not investigated whether or not this hap-
pens in more complex amplifiers, it is tempting to relate this finding to the
perception of feedback introducing what can sound like a badly-integrated
“super-tweeter”. Similarly, the fact that feedback can sometimes increase
the relative distortion of very low-level signals makes it tempting to relate
this finding to the loss of fine detail and room sounds. Whether or not
these are appropriate attributions can be determined only by psychoacoustic
experiments.
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